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ABSTRACT
Estimation of distribution algorithms (EDAs) try to solve
an optimization problem by finding a probability distribu-
tion focussed around its optima. For this purpose they con-
duct a sampling-evaluation-adjustment cycle, where search
points are sampled with respect to a probability distribu-
tion, which is adjusted according to the evaluation of the
sampled points. Although there are many successful exper-
iments suggesting the usefulness of EDAs, there are only
few rigorous theoretical results apart from convergence re-
sults without time bounds. Here we present first rigorous
runtime analyses of a simple EDA, the compact genetic al-
gorithm, for linear pseudo-boolean functions on n variables.
We prove a number of results showing that not all linear
functions have the same asymptotical runtime.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Algorithms, Performance

Keywords
Theoretical Analysis, Runtime, Compact Genetic Algorithm

1. INTRODUCTION
Evolutionary algorithms (EAs) (see [1]) essentially depend

on a population of search points evolving during the run of
the EA. Estimation of distribution algorithms (EDAs), on
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the other hand, get by without a population to store all
the information gained so far about the problem at hand.
Instead, EDAs utilize a probability distribution to gener-
ate new search points. Then the distribution is modified
to give those search points with a good objective function
value a higher probability. This process is repeated (until
some stopping criterion holds) by using the modified prob-
ability distribution as a basis for the next sampling. We
hope that the last found probability distribution is focussed
around points with a good objective function value, so that
these are being sampled during the run of the EDA with
high probability. Hence, EDAs can be interpreted as EAs
whose population is replaced by a probability distribution
resp. EAs where the genetic operators operate on the whole
population (and not only on one or two search points like
mutation and crossover normally do).

EDAs were introduced in the field of EAs for the first time
by [9] and since then a lot of different EDAs and successful
applications have been presented (see [6] for an overview).
Naturally, we are also interested in theoretical results prov-
ing which type of problems can be solved with EDAs and
which cannot. The convergence of some EDAs was ana-
lyzed theoretically (e. g., see [8] or [10]), giving us valu-
able insights in the behavior of EDAs without time limits.
But a finite, yet exponential runtime until convergence is of
no practical relevance for all problem dimensions not very
small. To analyze the short time behavior we have to ap-
ply runtime analysis, estimating the number of steps until a
sufficiently good probability distribution (resp. a sufficiently
good search point for classical EAs) has been found.

Rigorous runtime analysis is well-established in the the-
ory of EAs (see [2]). While experiments often give the initial
ideas for a theoretical analysis, only a rigorous theoretical
analysis estimating the probabilities of all errors introduced
by assumptions can lead to results of mathematical certainty
(see [13]). The rigorous mathematical analysis of EAs has
started with simple mutation-based EAs and test problems
(e. g., see [3] or [11]) and nowadays progresses towards more
realistic EAs for combinatorial optimization problems (see
[12]). Certainly, a similar development would be most ben-
eficial for the field of EDAs.

The compact genetic algorithm (cGA) is an ideal starting
point for the rigorous runtime analysis of EDAs: firstly pre-
sented in [4] its main purpose as a simplification of a GA
was to investigate the effect of populations in GAs more
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closely. Consider a GA using a population of K search
points and a selection, where two elements of the popula-
tion are randomly chosen and replaced by two copies of the
better search point (with respect to the objective function
f : Sn → R). Consequently, the proportion of the better in-
dividual increases by 1/K. The cGA mimics this behavior
while representing its probability distribution by n indepen-
dent probability distributions for the n components of the
search space Sn. Hence, it is not able to represent dependen-
cies between the different components, intuitively making it
a bad candidate for the optimization of all non-linear func-
tions. But there is no rigorously proven knowledge about the
runtime of the cGA on linear functions ([4] presented some
experimental results) either. In this paper we will prove
some runtime bounds with respect to K and n, following
the widely accepted convention in the analysis of algorithms
(see [7]) that the asymptotical dependence on K and n is
more important than (usually small) constant factors.

In the next section we formally define the cGA. Then we
introduce the surplus, a very helpful measure for the analysis
of the cGA. This is used in Section 4 to prove a general lower
bound of Ω(K

√
n) on the expected runtime of the cGA (see

[7] for the used notation of asymptotical growth rates). In
Sections 5 resp. 6 we prove an upper resp. lower bound on
the runtime for OneMax resp. BinVal, two linear functions
well examined in the field of EAs. These bounds prove that
the runtime of the cGA on linear functions can vary at least
between O(K

√
n) and Ω(Kn). Furthermore, their proofs

show how established methods in the analysis of population-
based EAs can help to analyze EDAs like the cGA. The
paper ends with some conclusions and open questions.

2. THE COMPACT GENETIC ALGORITHM
AND LINEAR FUNCTIONS

The compact genetic algorithm (cGA) introduced in [4]
is probably the most simple EDA possible. This simplic-
ity makes it an obvious object for theoretical investigations:
how can we hope to analyze more complex EDAs, if even
the most structurally simple EDAs are not analyzed? Fur-
thermore, we will see that simple algorithms and problems
can give rise to highly non-trivial questions.

The cGA follows the general outline of EDAs by sampling
search points according to a probability distribution, evalu-
ating them, and updating the probability distribution with
respect to the evaluation. One of the most important design
decisions is the representation of the probability distribu-
tion. Obviously, we need exponential space in the problem
dimension n to store a separate probability for every search
point possible in a cartesian search space. Hence, we cannot
model every possible probability distribution in polynomial
space. Any designer of EDAs must therefore choose the right
representation of the probability distribution that

1. can be stored in polynomial space in the problem di-
mension n and

2. can represent the probability distributions helping the
EDA to find a sufficiently good one.

The cGA represents the probability distribution compo-
nent-wise, i. e. for every dimension of the search space there
is one probability distribution over the range of possible val-
ues of this component. We concentrate on pseudo-boolean
objective functions f : {0, 1}n → R. In this case the cGA

uses n probabilities pi ∈ [0, 1] (i ∈ {1, . . . , n}), each one de-
noting the probability of a 1 in the ith dimension. Hence,
a search point x = (x1, . . . , xn) ∈ {0, 1}n has probability

P (x) :=
(

∏

i |xi=1 pi

)

·
(

∏

i |xi=0(1 − pi)
)

. Hence, if the

cGA is suited for some functions at all, it seems to be most
suited to linear functions, because it cannot represent any
dependencies between different dimensions.

Another detail to be specified is the mode of adjusting
the probability distributions. The cGA samples two search
points x, y ∈ {0, 1}n are via the actual probability distribu-
tion, but otherwise independently. They are compared with
respect to their objective function values f(x) and f(y) and
for each component i the probability pi is “pushed” towards
the component of the better search point by a summand
1/K. Hence, if the better search point has a 1 (resp. 0) in
the ith dimension and the worse one a 0 (resp. 1), pi is set
to pi + 1/K (resp. pi − 1/K). Notice, that the parameter
K can depend on the problem dimension n, i. e. K = K(n).
In [4] the parameter K is fixed to n in order to simulate the
simple GA with population size n. Since we also want to
analyze the influence of K on the behavior of the cGA, we
do not fix K. To prevent the pis from getting smaller than
0 or larger than 1, K has to be an even integer. All in all,
the cGA is defined as follows:

Algorithm 1. The cGA with even K ∈ N
+ for the max-

imization of f : {0, 1}n → R:

1. Set t := 1 and p1,t := p2,t := · · · := pn,t := 1/2.

2. For all i ∈ {1, . . . , n} set xi := 1 with probability pi,t

and xi := 0 otherwise.

3. For all i ∈ {1, . . . , n} set yi := 1 with probability pi,t

and yi := 0 otherwise.

4. If f(x) < f(y), swap x and y.

5. For every i ∈ {1, . . . , n}:
(a) If xi > yi, set pi,t+1 := pi,t + 1/K.

(b) If xi < yi, set pi,t+1 := pi,t − 1/K.

(c) If xi = yi, set pi,t+1 := pi,t.

6. Set t := t + 1 and go to step 2.

The cGA is similar to the univariate marginal distribution
algorithm (UMDA), see [8]. The UMDA samples in each
step M search points and selects N ≤ M of these according
to some selection method. The proportion of 1s of all N
search points at a position determines the probability of a 1

at this position in the next iteration. Hence, the UMDA is
more closely related to classical population-based EAs than
the cGA, which only samples two points in each iteration.

Notice, that in practice this infinite sampling-evaluation-
adjustment-cycle is stopped according to some stopping cri-
terion. Since we are interested in the number of steps nec-
essary to find a sufficiently good distribution, we omit it.

This raises the question of the definition of a “sufficiently
good” probability distribution. In practice, it would be suf-
ficient, if the final probability distribution Pt gives the set
of all optima a probability of 1/p(n), where p(n) is some
polynomial in n. Then a polynomial number of samples ac-
cording to Pt would result in at least one optimum with
high probability (the exact number of samples is dependent
on the degree of p and the probability we are looking for).
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Here we restrict ourselves to exact optimization and only
consider functions with exactly one optimum. Therefore,
we will define the runtime Tf of the cGA on an objective
function f : {0, 1}n → R as the number of steps, until the
probability distribution assigns probability one to the opti-
mum and probability zero to all other search points:

Tf := min{t ∈ N
+ ∪ {∞} |Pt(opt(f)) = 1}

(where opt(f) is the optimum of f). Notice, that the random
variable Tf takes values from the set N

+ ∪{∞}. An infinite
runtime happens exactly in the case that any probability pi

becomes zero during the run of the cGA, while the optimum
has a 1 in the ith dimension (or vice versa). Once, the value
of pi,t is one or zero, it can never change again, since the
other bit value will never be sampled again.

Hence, the runtime Tf will be infinite for most functions
with some probability only dependent on K and n. There-
fore, also the expected runtime E(Tf ) will be infinite, mak-
ing it useless as a performance measure. Thus, instead of an-
alyzing E(Tf ) we often look at the expected runtime E∗(Tf )
under the condition of a finite runtime:

E∗(Tf ) = E(Tf |Tf < ∞).

Additionally, we will try to bound the probability distribu-
tion of Tf , especially the probability P ∗

f := Prob(Tf < ∞)
of a finite runtime of the cGA on f . Notice, that a lower
bound on E∗(Tf ) can be useful without any bound on P ∗

f ,
since it tells us how long we have to wait even when the
runtime is finite. On the other hand, any upper bound on
E∗(Tf ) should be accompanied by a lower bound on P ∗

f .
Otherwise, we do not know the likelihood that our (small)
upper bound on the runtime holds.

The runtime of classical EAs is most often defined as the
number of evaluations until one of the optima is sampled
for the first time (the so called first-hitting time, e. g. see
[3]). The runtime Tf +1 is obviously an upper bound on the
first-hitting time, so asymptotical upper bounds on Tf also
hold for the first-hitting time. On the other hand, sampling
an optimum in the cGA is very unlikely, if the distribution
is far from optimal. Hence, we conjecture that the following
results also hold for the first-hitting time, but have to leave
exact proofs for future research.

The only parameter of the cGA is K, the inverse strength
of changing the probability distribution. The effect of K
on the optimization process is twofold: a small K implies a
large change of the probability distribution, which speeds up
optimization, if the distribution is changed “into the right
direction”. On the other hand, a small K makes it more
likely that a probability pi,t becomes zero, although the ith
component of the optimum is 1 (or vice versa). Hence, the
choice of K is a critical one and we will also analyze the
influence of K on the cGA for linear functions in the follow-
ing. Before that, we introduce in the next section a general
measure very helpful for the analysis of the cGA.

3. A GENERAL CHARACTERISTIC OF
THE CGA: THE SURPLUS

In this section we define and analyze a general measure
helping us to analyze the progress of the cGA: the so-called
surplus. First of all, we make the assumption, that the only
optimum of the objective function f : {0, 1}n → R is the
all-ones bit-string (1, . . . ,1). Notice, that this is no limi-

tation on the set of all pseudo-boolean functions with ex-
actly one optimum: since the cGA treats the bits 0 and 1

symmetrically, it will behave exactly the same for f and fa

(a ∈ {0, 1}n), where fa results from f by flipping the ith bit
in its argument, if and only if ai = 1. Hence, considering
fopt(f) instead of f , where opt(f) is the optimum of f and a

the bitwise complement of a, does not change the runtime of
the cGA. Because the optimum of fopt(f) is (1, . . . ,1), any

bound for fopt(f) also holds for the original function f .

Hence, the cGA has found the optimal distribution if and
only if p1 = · · · = pn = 1. During each iteration of the
cGA there are n single steps, the sub-steps of step 5 of Al-
gorithm 1, possibly changing the probabilities pi,t. A single
step of the cGA increasing the probability pi,t by 1/K is
called a success. Analogously, we call a single step a failure,
if a probability pi,t is decreased by 1/K. Hence, every itera-
tion comprises n single steps and it is important to estimate
how many of these steps are successes resp. failures.

Since the cGA starts with p1 = · · · = pn = 1/2, a neces-
sary and sufficient condition for the cGA to find the optimal
distribution is that the accumulated number of successes is
by nK/2 higher than the accumulated number of failures.
To simplify our notation we will call the difference between
the number of successes and failures the surplus. Obviously,
the surplus depends strongly on f deciding whether the
search point with more 1s is the fitter one. Consequently,
we should speak of the surplus with respect to f , but often
omit f when the context is clear.

In order to prove a general lower bound on the expected
runtime of the cGA, we have to find a measure upper bound-
ing the surplus for any f . The surplus in one iteration is the
number of successes minus the number of failures in this
iteration. Since we assume that (1, . . . ,1) is the only opti-
mum, the surplus in one iteration is the number of indices
i ∈ {1, . . . , n} where the fitter sampled search point has a
1 and the worse one a 0 (the number of successes) minus
the number of indices, where it is contrary (the number of
failures). In other words, the surplus is the number of proba-
bilities pi “going in the right direction“ minus the number of
pi, that “go in the wrong direction”. Obviously, a large pos-
itive surplus in every step guarantees a small runtime. By
analyzing the distribution of the surplus, we can get bounds
on the runtime of the cGA.

Let the random variable Xi ∈ {0, 1} (resp. Yi ∈ {0, 1})
denote the outcome of sampling the ith component of the
first (resp. second) search point. Therefore, in case that
the first (resp. second) sample is the fitter one, the surplus
equals X1 + · · ·+Xn − (Y1 + · · ·+Yn) (resp. Y1 + · · ·+Yn −
(X1 + · · · + Xn)). To be independent of the actual f , we
take the maximum of these two values as an upper bound
(which is just the absolute value):

Definition 2. Let p1, . . . , pn ∈ [0, 1] and the random vari-
ables X1, . . . , Xn, Y1, . . . , Yn ∈ {0, 1} be defined by:

Prob(Xi = a) := Prob(Yi = a) :=

{

pi , if a = 1,
1 − pi , if a = 0.

Then |X1 + · · · + Xn − (Y1 + . . . Yn)| is called the optimal
surplus S(p1, . . . , pn).

Because of the above argumentation we know that, re-
gardless of f and the random samples x and y, the sur-
plus of the cGA with probabilities p1, . . . , pn is at most
S(p1, . . . , pn):
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Lemma 3. Let p1, . . . , pn ∈ [0, 1]. The optimal surplus
S(p1, . . . , pn) stochastically dominates the surplus of the cGA
with probabilities p1, . . . , pn regardless of f , i. e. for all t ∈
{−n, . . . , n} the probability that the surplus of the cGA in
one iteration is at least t is at most Prob(S(p1, . . . , pn) ≥ t).

Hence, it is of obvious interest to upper bound the optimal
surplus in order to upper bound the surplus of the cGA:

Lemma 4. Let p1, . . . , pn ∈ [0, 1] and p := p1(1 − p1) +
· · ·+ pn(1− pn). The expected optimal surplus S(p1, . . . , pn)
is at most

√
2p.

Proof. Analyzing the expectation of the optimal surplus
seems to be complicated, as it is defined as the absolute value
of Z := X1 + · · · + Xn − (Y1 + · · · + Yn). But notice, that

E(|Z|) is at most
√

E(Z2). This follows from the convexity
of the function x2, i. e. for all a1, a2 ∈ R and α ∈ [0, 1]:

(α · a1 + (1 − α) · a2)
2 ≤ α · a2

1 + (1 − α) · a2
2.

By iteration the above inequality also holds for n ≥ 2 ar-
guments a1, . . . , an ∈ R with coefficients α1, . . . , αn ∈ [0, 1]
with α1+· · ·+αn = 1 (widely known as Jensen’s inequality):

(

n
∑

i=1

αiai

)2

≤
n
∑

i=1

αi · a2
i .

Defining a1, . . . , an as the different outcomes of |Z| and αi

as Prob(|Z| = ai), the above inequality is equivalent to
E(|Z|)2 ≤ E(Z2), since |Z|2 = Z2.

We can figure out E(Z2) easily by linearity of expectation:

E(Z2) = E
(

((X1 − Y1) + · · · + (Xn − Yn))2
)

= E

(

n
∑

i,j=1

(Xi − Yi) · (Xj − Yj)

)

=

n
∑

i,j=1

E ((Xi − Yi) · (Xj − Yj)) .

Notice that for i 6= j the random variable (Xi−Yi)·(Xj−Yj)
is 1 resp. −1 with the same probability 2·pi(1−pi)·pj(1−pj)
and 0 otherwise. Hence, the expected value of (Xi − Yi) ·
(Xj − Yj) is zero and E(Z2) can be simplified to

E(Z2) =
n
∑

i=1

E
(

(Xi − Yi)
2) =

n
∑

i=1

2pi(1 − pi) = 2p.

Thus, the expected value of |Z| is at most
√

2p.

Although the optimal surplus is an upper bound on the
surplus of the cGA, we will see that there are objective func-
tions, where the surplus of the cGA in one iteration equals
the optimal surplus, i. e. the bound is tight. Hence, we also
want to find a lower bound on the optimal surplus.

If there are no restrictions on the values of p1, . . . , pn the
best possible lower bound is zero (all pi can be either zero or
one). But often we will be in a situation, where we know the
accumulated surplus so far, i. e. the value of ps := p1+· · ·+pn

and also have some constant lower bound a > 0 on the values
of the pi, i. e. p1, . . . , pn ∈ [a, 1]. In this situation we can
state a lower bound on the minimal optimal surplus:

Lemma 5. Let a ∈ [0, 1[ be a constant and p1, . . . , pn ∈
[a, 1] with ps := p1 + · · · + pn ≤ n − k(1 − a) for k ∈ N

+.

Then the expected optimal surplus is Ω
(

√

ka(1 − a)
)

.

Proof. To prove the desired lower bound on the expec-
tation of the optimal surplus S(p1, . . . , pn), we show that

Prob
(

S(p1, . . . , pn) ≥
√

ka(1 − a)/2
)

is at least a constant

c > 0. In order to do this, we describe the optimal surplus
by an equivalent, but easier to analyze generating process:
In the beginning all random variables Xi and Yi are 0. In
the first phase we choose each i ∈ {1, . . . , n} independently
with probability 2pi(1 − pi). In the second phase we ran-
domly choose for every index i chosen in the first phase with
probability 1/2, whether we set Xi = 1 or Yi = 1. Hence,
we have Prob(Xi +Yi = 1) = 2pi(1−pi) and the probability
distribution of |Z| := |X1 + · · ·+ Xn − (Y1 + · · ·+ Yn)| gen-
erated by this process equals the probability distribution of
the optimal surplus S(p1, . . . , pn).

Using this two-phase process, it is obvious that the proba-
bility of |Z| being at least some z ≥ 1 only depends on 2p :=
2p1(1− p1) + · · ·+ 2pn(1− pn), the sum of the probabilities
of choosing an index in the first phase. A larger value of 2p
implies a higher probability of choosing at least z′ (for any
z′ ≥ 1) of the n indices in the first phase. The surplus gen-
erated in the second phase increases monotonously with the
number of indices chosen in the first phase. Hence, the sur-
plus S(p1, . . . , pn) stochastically dominates S(p′

1, . . . , p
′
n), if

p1(1− p1)+ · · ·+ pn(1− pn) > p′
1(1− p′

1) + · · ·+ p′
n(1− p′

n).
Therefore, a lower bound on p allows to lower bound the
optimal surplus. We claim that p becomes minimal for all
p1, . . . , pn ∈ [0, 1] with fixed ps := p1+· · ·+pn, if (p1, . . . , pn)
is of the form (a, . . . , a, 1, . . . , 1, x) with x ∈ [a, 1] (where the
order of the values is not important).

Assume that this does not hold, i. e. the term p becomes
minimal for some p1, . . . , pn with two values neither a nor
1. W. l. o. g. these two values are p1 < 1 and p2 > a with
p1 > p2. We want to show that increasing p1 by an arbitrary
ε > 0 and decreasing p2 by the same ε decreases the value of
p in contrast to our assumption that p is already minimal.
The contribution of p1 and p2 in p is p1(1−p1)+p2(1−p2) =:
p∗. Changing p1 to p1 + ε and p2 to p2 − ε, the contribution
of p1 and p2 in p changes to

(p1 + ε)(1 − p1 − ε) + (p2 − ε)(1 − p2 + ε)

= p1(1 − p1) + [ε(1 − p1 − ε) − p1ε]

+p2(1 − p2) + [−ε(1 − p2 + ε) + p2ε]

= p∗ + [ε(2p2 − 2p1 − 2ε)] < p∗.

Hence, we can assume w. l. o. g., that p1 = · · · = pl = a,
pl+1 = · · · = pn−1 = 1, and pn ∈ [a, 1] imply a minimal value
of Prob(|Z| ≥ z). Since ps ≤ n − k(1 − a), we know that
l ≥ k. Therefore, the expected number of chosen indices in
the first phase is at least 2ka(1−a). Using Chernoff bounds
(see [7]), it follows that the number of chosen indices in the
first phase is at least ka(1 − a) with constant probability.

The second phase partitions the set of chosen indices ran-
domly uniformly into two sets. If the number of chosen in-
dices in the first phase is N , it is well-known that with con-
stant probability the larger set has at least

√
N/2 more ele-

ments than the smaller set (because the largest binomial co-

efficient
(

N
N/2

)

is at most ε·2N/
√

N for some constant ε < 1).

Hence, there is a constant probability that the surplus in the
second phase is at least

√

ka(1 − a)/2, if the number of cho-
sen indices in the first phase is at least ka(1 − a). As the
latter has constant probability, the probability of the surplus
being

√

ka(1 − a)/2 is at least a constant.
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4. A GENERAL LOWER BOUND OF THE
RUNTIME

Using the results of the last section we show in this sec-
tion a general lower bound K

√

n/2 on the expected number
E∗(Tf ) of steps the cGA needs to optimize any function f .
The main idea of the proof is to show, that the expected
optimal surplus cannot be larger than

√

n/2, while a sur-
plus of Kn/2 is necessary to reach the optimum. Using a
drift argument (see [5]) it follows that the expected number

of iterations is at least K
√

n/2.

Theorem 6. The expected runtime E∗(Tf ) of the cGA

for any function f : {0, 1}n → R is at least K
√

n/2.

Proof. According to Lemma 4 the expected optimal sur-
plus in one iteration is at most

√
2p with p := p1(1 − p1) +

· · · + pn(1 − pn). Because p is at most n/4 (for p1 = · · · =
pn = 1/2), the expected optimal surplus in one iteration of

the cGA is at most
√

n/2.
Now we model a run of the cGA as follows: since the state

of the cGA is completely determined by the probabilities
p1, . . . , pn, a run of the cGA can be represented by a Markoff
chain S1, . . . , ST on the state set

{

0,
1

K
,

2

K
, . . . ,

K − 1

K
, 1

}n

.

The runtime of the cGA is the smallest T ∗, such that ST∗ =
(1, . . . , 1) := Sopt, the sole optimum of the random walk.
The drift method (see [5]) estimates the runtime of a random
walk via a function V mapping states of the random walk to
real numbers with V (Sopt) = 0. If clow (resp. cup) is a lower
bound (resp. an upper bound) on E(V (St) − V (St+1)) for
all t ≥ 0, the expected runtime is at most V (S1)/clow (resp.
at least V (S1)/cup) for the initial state S1.

Now we use the “missing probability to the optimum” as
the distance measure, i. e. V maps a state S = (p1, . . . , pn)
on V (S) = n − (p1 + · · · + pn). Since the initial state is
(1/2, . . . , 1/2), we have V (S1) = n/2. As the expected

surplus in every iteration is at most
√

n/2 and every suc-
cess increases the probability by 1/K, the expected decrease

E(V (St) − V (St+1)) is at most
√

n/2/K. Hence, the drift
method implies that the expected runtime is at least

n/2
√

n/2/K
= K

√

n/2.

The upper bound on the optimal surplus of
√

n/2 seems
to be unnecessarily rough, since it is only tight for p1 =
· · · = pn = 1/2. During the run of the cGA the probabilities
p1, . . . , pn will on average increase and the optimal surplus
of

√
2p will diminish. This observation can be used to get a

smaller upper bound on the surplus and therefore a larger
lower bound on the expected runtime. Since it is of the
same asymptotical order Ω(K

√
n) (with the constant factor

1 instead of
√

1/2), we omit its proof for the sake of brevity.

The main reason for the lower bound of K
√

n/2 is the
fact, that in any binomial distribution with constant success
probabilities the number of successes varies from its expec-
tation by O(

√
n) in the expected case. This also holds with

probability super-polynomially close to one (i. e. 1−o
(

1
q(n)

)

for any polynomial q), if we increase the range of variation
by a factor of log(n).

In other words, we can show that in every iteration of the
cGA the surplus is not larger than log(n)

√
n with proba-

bility super-polynomially close to one. Therby we can rule
out polynomially many steps having a larger surplus and still
have a super-polynomially small error probability. Since the
surplus has to be larger than nK/2, this allows us to lower
bound the number of steps by nK/(2 log(n)

√
n) with high

probability, as long as K is polynomial:

Theorem 7. With probability super-polynomially close to
one the number Tf of steps of the cGA with parameter K =
poly(n) to optimize an arbitrary function f : {0, 1}n → R is
at least K

√
n/(2 log(n)).

Proof. We show that the optimal surplus S(p1, . . . , pn)
is at most log(n)

√
n with probability super-polynomially

close to one. Using the above argumentation it follows that

the cGA needs at least nK/2

log(n)
√

n
= K

√
n/(2 log(n)) steps

with probability super-polynomially close to one for all K
polynomial in n.

Assume that S(p1, . . . , pn) = |X1 + · · ·+ Xn − (Y1 + · · ·+
Yn)| > log(n)

√
n. This implies that not both the number

of positive Xi − Yi and the number of negative Xi − Yi

can be in the interval [p− log(n)
√

n/2, p + log(n)
√

n/2] (for
p := p1(1 − p1) + · · · + pn(1 − pn)). Hence, we can upper
bound Prob (S(p1, . . . , pn) > log(n)

√
n) by the probability

that the number X̃ of i ∈ {1, . . . , n} with Xi − Yi = 1

or the number X̂ of of i ∈ {1, . . . , n} with Xi − Yi = −1
is outside the interval [p − log(n)

√
n/2, p + log(n)

√
n/2].

Since X̃ and X̂ are equally distributed we can upper bound
Prob (S(p1, . . . , pn) > log(n)

√
n) by:

2 · Prob

(

X̃ 6∈
[

p − log(n)
√

n

2
, p +

log(n)
√

n

2

])

= 2 ·
(

Prob

(

X̃ < p

(

1 − log(n)
√

n

2p

))

+

Prob

(

X̃ > p

(

1 +
log(n)

√
n

2p

)))

(*)

If p is at most log(n)
√

n/2, the last sum (*) is equal to

2 · Prob
(

X̃ > p
(

1 + log(n)
√

n
2p

))

. Since the probability of

Xi −Yi = 1 is pi(1− pi) the expected number E(X̃) of such
indices i is p and we can use Chernoff bounds (see [7]) to
upper bound the last probability by

2 · exp

(

− log(n)
√

n

2p
· p

3

)

= 2 · exp

(

− log(n)
√

n

6

)

,

which is super-polynomially small.
If p is larger than log(n)

√
n/2, then log(n)

√
n/2p is smaller

than 1. Hence, we have to upper bound both terms of
(*). Since they are of the form Prob(X̃ < p(1 − ε)) resp.

Prob(X̃ > p(1 + ε)), we can upper bound each of them by
exp(−ε2p/2) via Chernoff bounds (because ε ≤ 1). Thus,
we can upper bound Prob (S(p1, . . . , pn) > log(n)

√
n) by

4 exp

(

−
(

log(n)
√

n

2p

)2

· p

2

)

= 4 exp

(

− log(n)2n

8p

)

.

Since p is at most n/4, we can upper bound this last ex-
pression by 4 exp

(

− log(n)2/2
)

. Therefore, the probability
of the surplus in one iteration being larger than log(n)

√
n is

super-polynomially small for all p.

683



Altogether, we now know that the runtime of the cGA is
at least of order K

√
n and that with high probability it can

only be by a factor log(n) smaller. Nevertheless, this does
not imply that a small K is always advantageous, since a
small K increases the probability of an infinite runtime.

In the next section we analyze, if this bound is asymptot-
ically tight, i. e. if there is a function f , so that E∗(Tf ) is of
exact asymptotical order K

√
n.

5. ANALYSIS OF THE CGA ON ONEMAX
The lower bound on the runtime of the cGA in the last sec-

tion depends heavily on the optimal surplus S(p1, . . . , pn).
To answer the question, if the lower bound of K

√
n is asymp-

totically tight, we have to find a function whose surplus is
close to the optimal surplus. Therefore, it is advisable to
describe the surplus by an easier, yet equivalent process.

Let us consider linear functions f(x1, . . . , xn) =
∑n

i=1 wixi

with coefficients w1, . . . , wn ∈ R. Since the order of the
bits is not relevant for the cGA, we can assume w. l. o. g.
w1 ≥ . . . wn > 0. Thus, the order of the search points x and
y after step 4 of the cGA only depends on the bits, which
are set differently in x and y. The surplus is exactly the
number of positions, where the fitter search point has a 1

and the other one a 0 (the successes), minus the number
of positions, where it is the other way round (the failures).
Hence, we can describe the surplus of the cGA with respect
to a linear f by a more structured process:

Definition 8. Let p1, . . . , pn ∈ [0, 1] and f : {0, 1}n → R

a linear function with coefficients w1 ≥ · · · ≥ wn > 0. Con-
sider the following random process generating two subsets
A, B ⊆ {1, . . . , n} with A ∩ B = ∅:

1. Choose each i ∈ {1, . . . , n} with probability 2pi(1−pi).

2. Partition the set of chosen indices uniformly randomly
into A and B.

3. If
∑

i∈A wi <
∑

i∈B wi, swap A and B.

The surplus Sf (p1, . . . , pn) of the cGA with respect to f and
p1, . . . , pn is defined as |A| − |B|.

The surplus in one iteration of the cGA can be negative,
if the fitter of the two search points x and y contains more
0s than 1s. To exclude such a situation, which intuitively
makes the optimization process slower, we choose an objec-
tive function counting the 1s in its argument. This function,
OneMax : {0, 1}n → R defined by

OneMax(x1, . . . , xn) :=

n
∑

i=1

xi,

is the most simple non-trivial linear function and has been
the starting point for many theoretical investigations of EAs
(see [3]). When optimizing OneMax the number of suc-
cesses is in every iteration of the cGA at least as high as the
number of failures, since OneMax favors search points with
more 1s than 0s. Moreover, the surplus SOneMax(p1, . . . , pn)
of the cGA on OneMax equals the optimal surplus S(p1,
. . . , pn) (i. e. the probability distributions of both random
variables are the same): the optimal surplus exactly counts
the number of positions where the fitter search point with
respect to OneMax has a 1, but the less fit search point a
0. Hence, the function OneMax is an obvious candidate for
a function with expected runtime O(

√
nK):

Theorem 9. The expected runtime E∗(Tf ) of the cGA

with K = n1/2+ε (ε > 0 constant) for f = OneMax is
O(

√
nK) and the probability of the runtime being O(

√
nK)

is at least 1/2, implying P ∗
f ≥ 1/2.

Proof. To upper bound the runtime we have to lower
bound the surplus in each iteration. Lemma 5 can be helpful,
if we can upper bound ps := p1 + · · · + pn and lower bound
the values of the pi. To get an upper bound on ps we divide
the run of the cGA into different phases. The ith phase
ends as soon as ps exceeds some bound p∗

i (see below). This
upper bounds the value of ps in the ith phase by p∗

i .
We assume that all pi are at least 1/3 during the course of

optimization (we will see later on how likely this assumption
is). In this situation we can apply Lemma 5 with a = 1/3

stating that the expected optimal surplus is Ω(
√

ka(1 − a))
if ps := p1 + · · · + pn ≤ n − k(1 − a). Let us now divide
the run of the cGA on OneMax into n phases (a technique
often used in the analysis of EAs, see [13]), where the ith
phase (i ∈ {1, . . . , n}) starts with ps = n/2 + (i − 1)/2 and
is finished, when ps ≥ n/2 + i/2. Since the nth phase ends
with the optimal distribution, the runtime of the cGA is the
sum of the lengths of the n phases.

In the ith phase ps is at most n/2 + i/2. Therefore, we
can apply Lemma 5 with k = ⌊3(n − i)/4⌋, because

n

2
+

i

2
= n −

(

n

2
− i

2

)

= n − 2

3
·
(

3

4
(n − i)

)

.

Hence, the expected optimal surplus in the ith phase is
Ω(

√
n − i), i. e. the value of ps increases in one iteration of

the cGA in expectation by Ω(
√

n − i/K). Now we apply
the drift method analogously to the proof of Theorem 6,
implying that the expected length of the ith phase is

1/2

Ω(
√

n/2 − i/2/K)
= O

(

K√
n − i

)

.

Hence, the sum of the lengths of the phases 1 to n − 1 is

n−1
∑

i=1

O

(

K√
n − i

)

= O(K) ·
(

n−1
∑

i=1

1√
i

)

≤ O(K)

∫ n−1

0

x−1/2dx = O(K)

√
n − 1

2
= O(K

√
n).

We have to analyze the nth phase in more detail by sub-
dividing it into K/2 subphases, where the jth subphase
(j ∈ {0, . . . , K/2−1}) starts with ps = (n−1/2)+ j/K and
ends with ps ≥ (n−1/2)+(j +1)/K. Hence, each subphase
consists of the iterations until the surplus increases by one.
In the worst case only one pi, w. l. o. g. pn is smaller than
one. In this case the probability of an success in the jth sub-
phase is 2(1/2 + j/K)(1/2 − j/K). Therefore, the expected
length of the jth subphase is 1/(2(1/2 + j/K)(1/2− j/K)),
i. e. we can upper bound the length of the nth phase by

K/2−1
∑

j=0

1

2( 1
2

+ j
K

)( 1
2
− j

K
)
≤

K/2−1
∑

j=0

1
1
2
− j

K

=

K/2
∑

j=1

1

j/K
= O(K ln(K)).

Since ln(K) = O(
√

n), the total sum of the lengths of all
subphases is O(K

√
n). Hence, the Markoff bound (see [7])
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states that there is a constant c > 0, such that the proba-
bility of the runtime being at most cK

√
n is at least 2/3, if

all pi are at least 1/3 during the whole run.
In order to prove that this assumption is very likely, we

argue as follows: If step 3 of the cGA would be omitted, the
probabilities of a success and a failure at the ith position
would be both pi(1 − pi). As step 3 favors the search point
with more 1s (since the objective function is OneMax, of
course), the probability of a success is for every position at
least as high as the probability of a failure.

To make this argumentation formally correct, we notice
that K = n1/2+ε. Let us consider N := cK

√
n = cn1+ε

iterations and one of the n positions, w. l. o. g. the first po-
sition. Since in every iteration a success in the first position
is at least as likely as a failure, we can only overestimate
the number of failures if we assume that both have the same
probability. Using Chernoff bounds analogously to the proof
of Theorem 7 it follows that in N iterations with probability
super-polynomially close to one the number of failures can
only be by at most log(N)

√
N larger than the number of

successes. Since

log(N)
√

N ≤ n1/2+3ε/4

for n large enough, the probability p1 is at least 1/2 −
n1/2+3ε/4/K during all N iterations with probability super-
polynomially close to one. For n large enough we can lower
bound 1/2 − n1/2+3ε/4/K by 1/3. Therefore, all probabil-
ities p1, . . . , pn are at least 1/3 for cK

√
n iterations with

probability super-polynomially close to one. Consequently,
the cGA finds the optimal distribution in cK

√
n steps with

constant probability 1/2 for n large enough.
Considering cK

√
n iterations of the cGA as a super-phase,

we now know that in each super-phase the cGA finds the
optimal distribution with probability at least 1/2. Hence,
the number of super-phases until the optimal distribution
is found is geometrically distributed with success probabil-
ity 1/2, i. e. the expected number of super-phases until the
optimal distribution is found is 2cK

√
n (because of lack of

space we have to omit the proof that after each super-phase
all pi are at least 1/2 with constant probability).

Hence, OneMax is one of the easiest functions for the
cGA, if K is not too small. If K is too small, we cannot rule
out the possibility that one of the pi gets zero by unlucky
chance. In the next section we prove that not all linear
functions can be optimized by the cGA in expected time
O(K

√
n).

6. A DIFFICULT LINEAR FUNCTION FOR
THE CGA: BINVAL

Intuitively, OneMax is the easiest linear function pos-
sible. Nevertheless, the (1+1) EA optimizes every non-
trivial linear function asymptotically as fast as OneMax

([3]). Hence, one could guess that the cGA optimizes ev-
ery non-trivial linear function f : {0, 1} → R in expected
time O(K

√
n). But this guess does not hold: the main rea-

son for the fast optimization of OneMax by the cGA is
the fact, that its surplus is equal to the optimal surplus.
This is caused by every bit having the same influence on the
function value, which guarantees that in every iteration the
search point closer to the optimum (1, . . . ,1) is the fitter
one.

Obviously, this does not hold for every linear function.
One well-known counterexample is the so-called BinVal-
function, mapping a bit-string (x1, . . . , xn) on the integer
having the binary representation (x1, . . . , xn):

BinVal(x1, . . . , xn) :=

n
∑

i=1

xi · 2n−i.

Intuitively, BinVal is quite opposite to OneMax, since the
coefficient 2n−i of xi is higher than the sum

∑n
j=i+1 2n−j =

2n−i − 1 of all coefficients of the bits xi+1, . . . , xn “to the
right of” xi. Therefore, a search point (x1, . . . , xn) has a
higher BinVal-value than a search point (y1, . . . , yn), if and
only if for the smallest index i with xi 6= yi we have xi = 1.

Assume, that BinVal(x) > BinVal(y), i. e. there is one
i with xi > yi and xj = yj for all j < i, while the remain-
ing bits xi+1, . . . , xn and yi+1, . . . , yn cannot influence the
order of BinVal(x) and BinVal(y). Then the surplus on
the “unimportant bits” xi+1, . . . , xn and yi+1, . . . , yn is in
expectation zero, i. e. the surplus in one iteration cannot be
much larger than one with high probability. We make this
consideration formally exact:

Theorem 10. For all constant ε > 0 the probability of the
runtime of the cGA on BinVal being larger than nK/(1+ε)
is exponentially close (in K) to 1:

Prob

(

TBinVal >
nK

1 + ε

)

≥ 1 − exp

(

− ε2

4(1 + ε)
· K
)

.

Proof. Assume, the runtime TBinVal is at most nK/(1 +
ε), i. e. T := TBinVal ≤ nK/(1 + ε) steps have led to an ac-
cumulated surplus of nK/2. According to Definition 8 the
surplus SBinVal(p1, . . . , pn) in one step is the absolute differ-
ence of the sizes of two sets A and B, where

∑

i∈A 2n−i is

larger than
∑

i∈B 2n−i and every i has the same probability
pi(1 − pi) of being in A resp. B.

Let A w. l. o. g. be the set with the larger sum. Hence, A
contains the element with the smallest index in A∪B, while
all elements with larger indices are with the same probability
in A resp. B. Let Ai (i ∈ {1, . . . , T}) be the set A in the ith
step, where we have deleted the element of A ∪ B with the
smallest index. Analogously, let Bi be the set B in the ith
step (where no element is deleted). Therefore, the surplus
in the ith step is exactly 1 + |Ai| − |Bi|.

In order to find the optimal distribution in T ≤ nK/(1+ε)
steps, the set A1∪· · ·∪AT must contain nK/2− nK/(1+ε) =
εnK/(1 + ε) more elements than B1 ∪ · · · ∪ BT . We want
to upper bound the probability of this event. By assuming
that every element is chosen with probability 1 to be in A or
B (according to Definition 8) and that |A1 ∪ · · · ∪At∪ B1 ∪
· · · ∪ BT | = Tn, we can only overestimate this probability.

These assumptions imply that A1∪· · ·∪AT is a uniformly
chosen subset of a set of Tn ≤ n2K/(1 + ε) elements and
B1∪· · ·∪BT is its complement. Again, we can only overesti-
mate the probability by assuming that T equals nK/(1+ε).
Hence, A1 ∪ · · · ∪ AT contains εnK/(1 + ε) more elements
than B1 ∪ · · · ∪ BT if and only if

|A1 ∪ · · · ∪ AT | ≥ n2K

2(1 + ε)
+

εnK

2(1 + ε)
.

Since the expected size of A1 ∪ · · · ∪ AT is n2K/(2(1 +
ε)) and |A1 ∪ · · · ∪ AT | is the sum of {0, 1}-valued random
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variables, we can use Chernoff bounds to compute:

Prob

(

|A1 ∪ · · · ∪ AT | ≥ n2K

2(1 + ε)
+

εnK

2(1 + ε)

)

= Prob

(

|A1 ∪ · · · ∪ AT | ≥ n2K

2(1 + ε)
·
(

1 +
ε

n

)

)

≤ exp

(

− ε2

n2
· n2K

2(1 + ε)
· 1

2

)

= exp

(

− ε2

4(1 + ε)
· K
)

.

Hence, the runtime is larger than nK/(1 + ε) with prob-
ability exponentially close (in K) to 1.

So, the runtime of the cGA on BinVal is of order Ω(nK)
with high probability. For K = n1+ε with a constant ε > 0
we can show analogously to the proof of Theorem 9 that
the expected runtime E∗(TBinVal) is O(nK) and that the
runtime is of this growth order with constant probability.
We have to omit this proof because of lack of space.

7. CONCLUSION
The cGA is a very simple EDA using probability distribu-

tions without dependencies between different components.
Hence, its behavior on linear functions is of major interest,
since we expect those to be the most appropriate functions
for the cGA. In this paper we have presented a number of
theoretical analyses of the cGA on linear functions besides
a general lower bound of Ω(K

√
n) on its expected runtime,

which holds up to a factor of log(n) with high probability.
Our main result is the proof that some linear functions

like OneMax are optimized by the cGA in the optimal ex-
pected runtime O(K

√
n), while others like BinVal need at

least expected runtime Ω(Kn). Notice, that this is in com-
pliance with experimental results in [4], who observed em-
pirically that for fixed n both the average runtimes of the
cGA on OneMax and BinVal seem to increase linearly in
K, while the latter grows more rapidly. Here we have rig-
orously proven that these differences must occur and have
also presented an easily comprehendible measure, the sur-
plus, explaining why these differences occur. Furthermore,
we have seen that methods used in the analysis of common
population-based EAs, like the drift method or the parti-
tioning into phases, can be applied to analyze the cGA.

While these results are interesting by their own, they can
also serve as a first step towards the analysis of more com-
plicated EDAs. Naturally, there is no easily applicable pro-
cedure how to generalize these results. Every EDA must
be analyzed separately, but the presented analyses can give
hints how to do this. The surplus, i. e. a very local progress
towards the optimum, can probably be transferred to other
EDAs. E. g., analyzing the UMDA would almost inevitably
call for an analysis of the influence of the selection method
on the surplus.

Nevertheless, there are a lot of open questions for the
cGA: first of all, we are interested in a general upper bound
on the expected runtime of the cGA for all linear functions.
Knowing that BinVal is optimized in expected time O(Kn),
we strongly conjecture that this bound holds for all linear
functions. Furthermore, the influence of K on the prob-
ability P ∗

f of a finite runtime has to be investigated more
closely: although we can guarantee a constant lower bound
on P ∗

OneMax for K = n1/2+ε, we lack a proof, that an infinite
runtime gets much more likely for smaller K.
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Bayesian optimization algorithm, population sizing,
and time to convergence. In Proceedings of GECCO
2000, pages 275 – 282, 2000.

[11] G. Rudolph. Convergence Properties of Evolutionary
Algorithms. Verlag Dr. Kovač, 1997.
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